Increased Robustness in Context Detection and Reasoning Using Uncertainty Measures: Concept and Application
نویسندگان
چکیده
This paper reports on a novel recurrent fuzzy classification method for robust detection of context activities in an environment using either single or distributed sensors. It also introduces a classification of system architectures for uncertainty calculation in general. Our proposed novel method utilizes uncertainty measures for improvement of detection, fusion and aggregation of context knowledge. Uncertainty measurement calculations are based on our novel recurrent fuzzy system. We applied the method in a real application to recognize various applause (and non applause) situations, e.g. during a conference. Measurements were taken from mobile phone sensors (microphone, accel. if available) and acceleration sensory attached to a board marker. We show that we are able to improve robustness of detection using our novel recurrent fuzzy classifier in combination with uncertainty measures by ∼30% on average. We also show that the use of multiple phones and distributed recognition in most cases allows to achieve a recognition rate between 90% and 100%.
منابع مشابه
Application of Thau Observer for Fault Detection of Micro Parallel Plate Capacitor Subjected to Nonlinear Electrostatic Force
This paper investigates the fault detection of a micro parallel plate capacitor subjected to nonlinear electrostatic force. For this end Thau observer, which has good ability in fault detection of nonlinear system has been presented and governing nonlinear dynamic equation of the capacitor has been presented. Upper and lower threshold for fault detection have been obtained. The robustness of th...
متن کاملUncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1
In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملClinical competence of psychiatric nurse: A concept analysis in Rogers` evolutionary method
Introduction: "Clinical competency" is a complicated concept which is important in nursing profession for safe caring. However; there is no certainty on clinical competence definition as the kind of psychiatric nursing services changes based on context. A clear definition of clinical competency leads to identify the essential components and in research or clinical practice and provides the best...
متن کاملComprehensive Decision Modeling of Reverse Logistics System: A Multi-criteria Decision Making Model by using Hybrid Evidential Reasoning Approach and TOPSIS (TECHNICAL NOTE)
In the last two decades, product recovery systems have received increasing attention due to several reasons such as new governmental regulations and economic advantages. One of the most important activities of these systems is to assign returned products to suitable reverse manufacturing alternatives. Uncertainty of returned products in terms of quantity, quality, and time complicates the decis...
متن کامل